三角函数诱导公式有哪些?三角函数必背公式有哪些?
来源:华讯网     时间:2022-07-05 15:08:12

三角函数诱导公式有哪些?

诱导公式是指三角函数中,利用周期性将角度比较大的三角函数,转换为角度比较小的三角函数的公式。 诱导公式有六组,共54个。

常用的诱导公式有以下六组:

公式一

终边相同的角的同一三角函数的值相等。

设α为任意锐角,弧度制下的角的表示:

角度制下的角的表示:

sin (α+k·360°)=sinα(k∈Z).

cos(α+k·360°)=cosα(k∈Z).

tan (α+k·360°)=tanα(k∈Z).

cot(α+k·360°)=cotα (k∈Z).

sec(α+k·360°)=secα (k∈Z).

csc(α+k·360°)=cscα (k∈Z).

公式二

π+α的三角函数值与α的三角函数值之间的关系。

设α为任意角,弧度制下的角的表示:

sin(π+α)=-sinα.

cos(π+α)=-cosα.

tan(π+α)=tanα.

cot(π+α)=cotα.

sec(π+α)=-secα.

csc(π+α)=-cscα.

角度制下的角的表示:

sin(180°+α)=-sinα.

cos(180°+α)=-cosα.

tan(180°+α)=tanα.

cot(180°+α)=cotα.

sec(180°+α)=-secα.

csc(180°+α)=-cscα.[1]

公式三

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα.

cos(-α)=cosα.

tan(-α)=-tanα.

cot(-α)=-cotα.

sec(-α)=secα.

csc (-α)=-cscα.

公式四

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

弧度制下的角的表示:

sin(π-α)=sinα.

cos(π-α)=-cosα.

tan(π-α)=-tanα.

cot(π-α)=-cotα.

sec(π-α)=-secα.

csc(π-α)=cscα.

角度制下的角的表示:

sin(180°-α)=sinα.

cos(180°-α)=-cosα.

tan(180°-α)=-tanα.

cot(180°-α)=-cotα.

sec(180°-α)=-secα.

csc(180°-α)=cscα.[1]

公式五

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

弧度制下的角的表示:

sin(2π-α)=-sinα.

cos(2π-α)=cosα.

tan(2π-α)=-tanα.

cot(2π-α)=-cotα.

sec(2π-α)=secα.

csc(2π-α)=-cscα.

角度制下的角的表示:

sin(360°-α)=-sinα.

cos(360°-α)=cosα.

tan(360°-α)=-tanα.

cot(360°-α)=-cotα.

sec(360°-α)=secα.

csc(360°-α)=-cscα.[1]

公式六

π/2±α 及3π/2±α与α的三角函数值之间的关系:(⒈~⒋)

⒈π/2+α与α的三角函数值之间的关系

弧度制下的角的表示:

sin(π/2+α)=cosα.

cos(π/2+α)=-sinα.

tan(π/2+α)=-cotα.

cot(π/2+α)=-tanα.

sec(π/2+α)=-cscα.

csc(π/2+α)=secα.[2]

角度制下的角的表示:

sin(90°+α)=cosα.

cos(90°+α)=-sinα.

tan(90°+α)=-cotα.

cot(90°+α)=-tanα.

sec(90°+α)=-cscα.

csc(90°+α)=secα.[2]

⒉ π/2-α与α的三角函数值之间的关系

弧度制下的角的表示:

sin(π/2-α)=cosα.

cos(π/2-α)=sinα.

tan(π/2-α)=cotα.

cot(π/2-α)=tanα.

sec(π/2-α)=cscα.

csc(π/2-α)=secα.

角度制下的角的表示:

sin (90°-α)=cosα.

cos (90°-α)=sinα.

tan (90°-α)=cotα.

cot (90°-α)=tanα.

sec (90°-α)=cscα.

csc (90°-α)=secα.

⒊ 3π/2+α与α的三角函数值之间的关系

弧度制下的角的表示:

sin(3π/2+α)=-cosα.

cos(3π/2+α)=sinα.

tan(3π/2+α)=-cotα.

cot(3π/2+α)=-tanα.

sec(3π/2+α)=cscα.

csc(3π/2+α)=-secα.[2]

角度制下的角的表示:

sin(270°+α)=-cosα.

cos(270°+α)=sinα.

tan(270°+α)=-cotα.

cot(270°+α)=-tanα.

sec(270°+α)=cscα.

csc(270°+α)=-secα.[2]

⒋3π/2-α与α的三角函数值之间的关系

弧度制下的角的表示:

sin(3π/2-α)=-cosα.

cos(3π/2-α)=-sinα.

tan(3π/2-α)=cotα.

cot(3π/2-α)=tanα.

sec(3π/2-α)=-cscα.

csc(3π/2-α)=-secα.

角度制下的角的表示:

sin(270°-α)=-cosα.

cos(270°-α)=-sinα.

tan(270°-α)=cotα.

cot(270°-α)=tanα.

sec(270°-α)=-cscα.

csc(270°-α)=-secα.[3]

三角函数必背公式

三角函数的必背公式包括半角公式,倍角公式,两角和与差公式,积化和差公式,和差化积公式。三角函数是数学中属于初等函数中的超越函数的函数。通常是在平面直角坐标系中定义的,其定义域为整个实数域。

半角公式

sin(A/2)=±√((1-cosA)/2)

cos(A/2)=±√((1+cosA)/2)

tan(A/2)=±√((1-cosA)/((1+cosA))

倍角公式

Sin2A=2SinA*CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

两角和与差公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-cossinB

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB

积化和差公式

sinAsinB=-[cos(A+B)-cos(A-B)]/2

cosAcosB=[cos(A+B)+cos(A-B)]/2

sinAcosB=[sin(A+B)+sin(A-B)]/2

cosAsinB=[sin(A+B)-sin(A-B)]/2

和差化积公式

sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]

sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]

cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]

cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

三角函数诱导公式的口诀

奇变偶不变。符号看象限。象限的口诀是,一全正。二正弦,三正切。四余弦。奇偶指的是二分之kπ。k若是奇数。那三角函数就变了。

奇变偶不变:二分之kπ。π你可以理解成180°。举个例子,COS290°等于二分之三(三就是k)π+20°。k是奇数。所以COS就要变成SIN,290°在第4象限。也就是正的。所以COS290°等于sin20°。

学习三角函数的意义

三角函数是一把钥匙,他可以打开许多学科的大门,比如,物理的高等数学的.可以说三角函数几乎无所不能,所以必须学习好。此外,三角函数本身在实际中也有一定的应用,但对于以后的学习意义更大。

关键词: 三角函数诱导公式 三角函数必背公式 三角函数诱导公式口诀 学习三角函数的意义 半角公式