代数余子式是什么?3×3行列式的计算公式看这里
来源:民企网     时间:2022-10-14 13:30:38

代数余子式是什么?

代数余子式:

在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。

一个元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关

代数余子式之和怎么求?

所有代数余子式之和等于这个伴随矩阵所有元素之和,直接求它的伴随矩阵就行,然后伴随矩阵各个元素相加即为所求。在n阶行列式中,把元素ai所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素ai的余子式,记作M,将余子式M再乘以-1的o+e次幂记为A,A叫做元素a的代数余子式。一个元素ai的代数余子式与该元素本身没什么关系,只与该元素的位置有关。

3×3行列式的计算公式

三乘三阶行列式计算方法,如下:

三阶行列式{(A,B,C),(D,E,F),(G,H,I)},A、B、C、D、E、F、G、H、I都是数字。

1、按斜线计算A*E*I,B*F*G,C*D*H,求和AEI+BFG+CDH

2、再按斜线计算C*E*G,D*B*I,A*H*F,求和CEG+DBI+AHF

3、行列式的值就为(AEI+BFG+CDH)-(CEG+DBI+AHF)

三阶行列式计算公式是行列式结果=a1·b2·c3+b1·c2·a3+c1·a2·b3-a3·b2·c1-b3·c2·a1-c3·a2·b1。行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。

无论是在线性代数、多项式理论,还是在微积分学中,行列式作为基本的数学工具,都有着重要的应用。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

三阶行列式的性质

性质1:行列式与它的转置行列式相等。

性质2:互换行列式的两行(列),行列式变号。

推论:如果行列式有两行(列)完全相同,则此行列式为零。

性质3:行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。

推论:行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。

性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零。

性质5:把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。

代数余子式和余子式的区别

子式和代数余子式的区别:指代不同、特点不同。

余子式和代数余子式区别解析

指代不同

余子式:行列式的阶越低越容易计算,于是很自然地提出,能否把高阶行列式转换为低阶行列式来计算。

代数余子式:在n阶行列式中,把元素ai所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素ai的余子式。

特点不同

余子式:关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式。

代数余子式:元素的代数余子式与该元素本身没什么关系,只与该元素的位置有关。

为什么矩阵的各行元素的和等于其特征值

因为因为 A 乘列向量 (1,1,1.,1)^T 时 相当于把A的各行加起来构成一个列向量,利用根与系数的关系可得。

令 x = (1,1,1)^T

则由已知条件得 Ax = (3,3,3)^T = 3(1,1,1)^T = 3x。

所以 3 是A的特征值,x 是A的属于特征值3 的特征向量。

关键词: 代数余子式 代数余子式之和怎么求 代数余子式和余子式的区别 为什么矩阵的各行元素的和等于其特征值