标准差是什么意思啊?标准差怎么算?例题来了
来源:民企网     时间:2022-07-18 14:48:51

标准差是什么意思啊?

标准差是离均差平方的算术平均数(即:方差)的算术平方根,用σ表示。标准差也被称为标准偏差,或者实验标准差,在概率统计中最常使用作为统计分布程度上的测量依据。

标准差是方差的算术平方根,标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。

在实验中单次测量总是难免会产生误差,为此经常测量多次,然后用测量值的平均值表示测量的量,并用误差条来表征数据的分布,其中误差条的高度为±标准误差。这里即标准差。

扩展资料:

标准差反映组内个体间的离散程度,测量到分布程度的结果,原则上具有两种性质:

为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。

简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。

标准差怎么算 例题

计算标准差的步骤通常有四步:计算平均值、计算方差、计算平均方差、计算标准差。例如,对于一个有六个数的数集2,3,4,5,6,8,其标准差可通过以下步骤计算:

计算平均值:

(2 + 3 + 4 + 5+ 6 + 8)/6 = 30 /6 = 5

计算方差:

(2 – 5)^2 = (-3)^2= 9

(3 – 5)^2 = (-2)^2= 4

(4 – 5)^2 = (-1)^2= 0

(5 – 5)^2 = 0^2= 0

(6 – 5)^2 = 1^2= 1

(8 – 5)^2 = 3^2= 9

计算平均方差:

(9 + 4 + 0 + 0+ 1 + 9)/6 = 24/6 = 4

计算标准差:

√4 = 2

标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义为方差的算术平方根,反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。其公式如下所列。标准差的观念是由卡尔·皮尔逊(Karl Pearson)引入到统计中。

方差的计算公式

方差的计算公式为S^2=1/n[(x1-x)^2+(x2-x)^2+……+(xn-x)^2]。其中x为这组数据中的数据,n为大于0的整数。

方差的含义

方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。

方差的计算公式

方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差,记作S^2。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。计算公式为:

S^2=1/n[(x1-x)^2+(x2-x)^2+……+(xn-x)^2]

其中:x为这组数据中的数据,n为大于0的整数。

标准差的含义

在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。

关键词: 标准差是什么意思啊?标准差怎么算 标准差例题 方差的计算公式 方差的含义 标准差的含义